Power and Sample Size

Lisa Kuramoto
Centre for Clinical Epidemiology and Evaluation
Overview

Outline

• Review
• Introduction to power and effect size
• Power and other factors
• Example – estimating sample size

Learning objectives

• to be able to define power
• to be able to name 3 factors that affect power
• to be aware of power and sample size resources
Review

Terminology

• **null hypothesis**, H_O
 typically states that there is no relationship between the response and explanatory variable(s)

• **alternative hypothesis**, H_A
 typically states that there is a relationship between the response and explanatory variable(s)
Review

More terminology

- **type I error**, α

 chance of mistakenly rejecting H_0

- **type II error**, β

 chance of mistakenly accepting H_0
Truth table

<table>
<thead>
<tr>
<th>Decision</th>
<th>State of Reality</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject H_0</td>
<td>H_0 true</td>
<td>H_0 false</td>
</tr>
<tr>
<td></td>
<td>type I error α</td>
<td>correct decision $1-\beta$</td>
</tr>
<tr>
<td>Accept H_0</td>
<td>correct decision $1-\alpha$</td>
<td>type II error β</td>
</tr>
</tbody>
</table>
Introduction to power

What is power?

- chance of correctly rejecting H_0
 - ie. finding a true significant result

Why is power analysis important?

- helps to design study
- determines if we are able to detect a meaningful effect
Introduction to power

Graphical representation
Introduction to effect size

What is effect size?

• “the degree to which the null hypothesis is false” (Cohen, 1977)
• refers to the population rather than a specific sample
• effect size is a scale-free, continuous measure
• under H_0, effect size, d, is 0
• each statistical test has its own effect size index
Introduction to effect size

Some tests and their effect sizes

- two sample t-test: difference between means in terms of within group standard deviation
- product-moment correlation: correlation
- one-way analysis of variance: ratio of standard deviation between groups and standard deviation within groups

- see Cohen (1992)
Introduction to effect size

How to estimate effect size?

- prior research
- theoretical context of the research
 - “What is the smallest, clinically significant difference?”
 - “What is important enough to warrant attention?”
- use of special conventions
Power and other factors

What affects power?

• type I error
• type II error
• sample size
• effect size
Power and other factors

Power and type I error

- α level is the chance of a type I error
- as α decreases, power decreases
- we want α to be small
- generally α is 0.01 or 0.05
Power and other factors

Power and type II error

- β is the chance of a type II error
- as β decreases, power increases
- we want β to be small
- generally, $\beta \leq 0.20$
Power and sample size

- n is the number of sampling units in your study
- as sample size increases, power increases
- the more power you want in your study, the larger the sample size you will require
<table>
<thead>
<tr>
<th>Power and other factors</th>
</tr>
</thead>
</table>

Power and effect size

- effect size is “the degree to which the null hypothesis is false” (Cohen, 1977)
- as the effect size increases in magnitude, power increases
- we can denote effect size by d
<table>
<thead>
<tr>
<th>Power and other factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check your understanding</td>
</tr>
</tbody>
</table>
Types of power analyses

A priori
- done before the study is conducted
- helps in the design of study

Post hoc
- done after the study is conducted
- helps to understand observed results

Compromise
- done when sample size is restricted
How can we estimate sample size?

<table>
<thead>
<tr>
<th>Analytical formulae</th>
</tr>
</thead>
<tbody>
<tr>
<td>• some exact or approximate formulae available</td>
</tr>
<tr>
<td>• typically difficult to obtain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Published tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>• literature has tables of sample size for specific type I error, power, and effect size combinations</td>
</tr>
<tr>
<td>eg. Cohen (1977)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>• some software can do power analysis; important to understand inputs and outputs</td>
</tr>
<tr>
<td>eg. G*Power, UnifyPow (SAS)</td>
</tr>
</tbody>
</table>
Example: scenario

Suppose that you would like to compare the effect of a newly developed drug (drug A) and a current drug (drug B) on systolic blood pressure (sbp). You would like to know how many patients to include in your study.

What information do we need?
Example: statistical problem

What is the hypothesis?

H_O: the mean sbp among patients on drug A is the same as those patients on drug B

ie. $\mu_A = \mu_B$

H_A: the mean sbp among patients on drug A is different from those patients on drug B

ie. $\mu_A \neq \mu_B$

How will we test this hypothesis?

independent two-sample t-test

with two-sided alternative
Example: What affects sample size?

type I error

Q: How often would you be comfortable with rejecting H_0 when there is no difference?

A: 1 out of 20 times

$\alpha = 0.05$
Example: What affects sample size?

power

Q: If there is actually a difference, with what probability would you like to detect this difference?

A: want 80% chance of detecting difference

\[1 - \beta = 0.80 \]
Q: What is the smallest, clinically significant difference that you would like to detect?

A: It is known from past studies that patients on the current drug have an average sbp of 125 mmHg with a standard deviation of 20 mmHg. We would like to detect a 10% difference. We assume the standard deviation of sbp using the new drug will be 20 also.

\[d = \frac{(125 \times 0.10)}{20} \approx 0.63 \]
Example: estimating sample size

How can we compute sample size using analytical methods?

For an independent two-sided t-test (with two-sided alternative):

\[n \geq 2(z_{1-\alpha/2} - z_\beta)^2/d^2 \]
\[\geq 2(1.96 - (-0.84))^2/(0.63)^2 \]
\[\geq 40.2 \]

We need at least 41 subjects per group
Example: estimating sample size

How can we compute sample size using tables?

- reference: Cohen, 1977
- How to read the table:
 - a_1 is type I error for one-sided test
 - a_2 is type I error for two-sided test
 - d is effect size
 - **Power** is power
- table shows sample size per group
Example: estimating sample size

How can we compute sample size using tables?

• From the table, we can see that we need a sample size that is more than 33, but less than 45 in each group
• Using linear interpolation, an effect size of 0.63 corresponds to a sample size of about 41.4

We need at least 42 subjects per group
Example: estimating sample size

How can we compute sample size using software?

G*Power (Erdfelder, et al 1996)

- general power analysis program
- can compute sample size and power for t-tests, F-tests, chi-square tests
- freeware for Windows and MacIntosh
Example: estimating sample size

How can we compute sample size using software?

1. Select type of test: \textit{t-Test (means)} default
2. Select type of analysis: \textit{A priori}
3. Select alternative hypothesis: \textit{Two tailed}
4. Input parameters:
 - effect size = 0.63
 - alpha = 0.05
 - power = 0.80
5. Hit “enter”
Example: estimating sample size

What does G*Power output tell us?

- Total sample size is 82
- Actual power is 0.8046
- Critical $t(80)$ is 1.9901

We need at least 41 subjects per group
Example: follow-up

How do the following affect sample size?

1. want the chance of finding an effect, if one really exists, to be 0.95
2. want to detect a 15% difference
3. standard deviation of sbp ranges from 15-25 mmHg
4. want 99% chance of correctly claiming there is no difference between the two drugs
5. want to see if drug B lowers sbp more than drug A
Example: follow-up part 1

Power, 1-β

1-β = 0.95, so β = 0.05

Using analytical methods:

\[n \geq 2^* (z_{1-\alpha/2} - z_\beta)^2 / d^2 \]

\[\geq 2^* (1.96 - (-1.64))^2 / (0.63)^2 \]

\[\geq 66.5 \]

We need at least 67 subjects per group.
Example: follow-up part 2

Effect size, d

$$d = \frac{(125 \times 0.15)}{20} \approx 0.94$$

Using analytical methods:

$$n \geq 2 \times (z_{1-\alpha/2} - z_{\beta})^2 / d^2$$

$$\geq 2 \times (1.96 - (-0.84))^2 / (0.94)^2$$

$$\geq 17.9$$

We need at least 18 subjects per group.
Example: follow-up part 3

Effect size, d

d ranges from 0.50 to 0.83

[$d = (125*0.10)/15 \approx 0.83$; $d = (125*0.10)/25 \approx 0.50$]

Using software:
We can see how sample size changes with effect size
Example: follow-up part 3

t Test for Means

Alpha = 0.05, Power = 0.8

Test is two-tailed

Note: Accuracy mode
Example: follow-up part 4

*type I error, α

$\alpha = 0.01$

Using published tables:

$\beta = 0.20$, $d = 0.63$, $\alpha = 0.01$

We need at least 61 subjects per group.
Example: follow-up part 5

hypothesis

one-sided alternative

\[H_0 : \mu_A \leq \mu_B \]

\[H_A : \mu_A > \mu_B \]

Using software:
Select alternative hypothesis: One tailed

We need at least 32 subjects per group.
References